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ABSTRACT: In this paper, the problems of semi-global leaderless consensus for continuous-time multi-agent 

systems under input saturation restraints are investigated. We consider the leaderless consensus problems 

under fixed undirected communication topology. New necessary synthesis conditions are established for 

achieving semi-global leaderless consensus via the distributed adaptive protocols, which is designed by utilizing 

low gain feedback tactics and the relative state measurements of the neighboring agents. Finally, simulation 

results illustrate the theoretic developments. 
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I. INTRODUCTION 
During the last few decades, consensus has been became a very hot research topic inmany scientific fields, 

such as computer science, physics, biology,and system control. Roughly speaking, consensus means the 

agreementof agents on the joint status value via utilizing local interactionfrom the neighbouring agents. In 

recent years, extensive research attentionhas been paid into the consensus problem of multi-agent systems[1-5]. 

It should be noted that, although thepower of each individual agent is quite limited, the wholeinteraction 

network system may accomplish complex tasks in acoordinated fashion. Therefore, the consensus problem has a 

widerange of potential applications, to mention just a few, includingcooperation of unmanned air vehicles 

(UAVs) in [6],distributed sensor networks in [7] and [8],attitude alignment for a flock of satellites in 

[9],flocking control in [10] and [11],  congestion control under communication topology [13].Interested readers 

are referred to the recent survey articles [14], [15] and the references citedtherein for details.It is known that 

consensus has been studied for several decades in computer science. Broadlyspeaking, there are two classes of 

consensus, that is, the leaderless consensus and the leaderfollowing one. Usually, the multi-agent system 

dynamic models are described by double-integratordynamics or single-integrator kinematics [13]-[17]. In recent 

literature, the general linear dynamicmodel has been considered to address more complicated system dynamics 

in engineering practice.For instance, in [18] the authors studied the consensus problems of both leaderless and 

leader-following cases in the situation of fixed interaction networks. In [19] the consensus problemsin the case 

of leader-following were discussed under a switching communication network. Theleaderless nonlinear 

consensus subject to parametric uncertainties was achieved by developingadaptive continuous finite-time 

distributed protocols in [20]. The consensus of multi agents withsecond-order, linear and Lipschitz nonlinear 

dynamics via utilizing the adaptive algorithms werestudied in [21] and [22], respectively. A distributed observer 

based algorithm was proposed in [23]for leader-following consensus of networked multiple agents systems. 

Indeed, up to now, the investigation on consensus has many comprehensive achievements.However, in 

practice networked multi-agent systems may have more complicated dynamics. Theindustrial applications of 

consensus are limited by all kinds of physical conditions, such as the inputsaturation constraints. Till now, more 

and more research activities has paid close attention tothe consensus problems for networked multiple agents 

systems under input saturation constraintsbecause of its unique characteristic and practical applications. In [24], 

the authors investigated theglobal consensus of linear networked multiple agents dynamics with input saturation 

by distributedobserver-based algorithm over fixed and switching interaction networks. For discrete-time 

systems,the global consensus problem under input saturation constraints was addressed in [25]. In [26] Suet al. 

proposed a linear low gain feedback algorithm to reach semi-global consensus for networkedmulti agents 

dynamics under the assumption of agents are linear asymptotically null controllablewith bounded controls 

(ANCBC) [27]. While in recent paper [28], the semi-global consensus oflinear dynamics in the case of input 

saturation was studied by utilizing observer-based algorithmsand the low gain feedback technique, under the 

assumptions that the communication networkswere jointly connected or connected and each agent was 

detectable. With the input saturationrestricts, the semi-global synchronization problem for multiple agents with 

linear systems wasstudied in [29]. 

In the present paper, we revisit the problem of leaderless consensus of linear multi agentsdynamics with 

input saturation constraints. New semi-global consensus conditions are establishedby using distributed adaptive 
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protocols. Compared with some existing results, the distinctivepoints of the paper can be expressed as the 

following sentences. Under the assumption thatthe agents are ANCBC, without realizing any information of the 

networks, all agents achievean agreement by utilizing the distributed adaptive protocols and using the low gain 

feedbacktechnique over both fixed and switching interaction networks. Also, we provide simulation resultson 

two numerical examples to verify the theoretical developments. 

The remainder of this paper is arranged as follows. Preliminaries and notations are introducedin Section 2. 

In Section 3, based on the distributed adaptive protocols, we address the problemof semi-global leaderless 

consensus under fixed undirected graph.The simulation results on two numericalexamples are given in Section 4 

to verify the theoretic developments. Finally, a brief conclusionis drawn in Section 5. 

 

II. PROBLEM BACKGROUND AND PRELIMINARIES 
In this paper, we suppose that the information exchange between agents and the leader is described by a 

fixed undirected graph ( , , ),G V E A with the set of vertices  1, 2,...,V N whose elements represent 

agents of the group, the set of undirected edges E V V  represent neighboring relations among agents, and a 

weighted adjacency matrix [ ]ij

n n
A a R


   is defined as 0ija   if and only if ( , )j i E ; otherwise, 

0ija  . Here, we also assume that ij jia a  for all 1,2,...,i n .  

For an undirected graph G , a Laplacian matrix [ ]
n n

L l Rij


  of graph G is defined as L D A  , 

with the degree matrix  1, , ND diag d d  is defined as i th diagonal elements 
1,

( )
N

ijj j i
a t

  . Define 

0 10 20 0( ( ), ( ), , ( ))NB diag b t b t b t  as 0 0ib  if the leader is available by agent i  and 0 0ib  otherwise. 

The eigenvalues of L can be ordered as 1 2 N     . Then, 
1 0   with its corresponding right 

eigenvector 
T1 [1,1,...,1] nR  . Moreover, 

2 0   if G  is a connected graph.  

Assume that M is a matrix, the notation 
TM denotes its transpose matrix. A symmetric positive matrix 

M indicates that all its eigenvalues are positive, a positive semi-definite M indicates that all its eigenvalues 

are non-negative. The symbol   is the Kronecker product. nI  denotes the identity matrix of dimension 

.N N  

 

Lemma 1 [4]:Denote L  as the Laplacian of a fixed undirected graph G  include N  agents, denote L  as 

the Laplacian of the graph consisting of N agents and one leader, 0 0ib   if there is a spanning tree with the 

leader as the root vertex. 

 

Lemma 2 [26]: For any 
m mR   and , , 1, 2,...,m

i i R i N    

T

1 1 1 1

1
( )( ) ( ( )( )) ( ) ( ( )( ))

2

N N N N
T

ij i j i j ij i i j

i j i j

a t a t      
   

         

In this paper, we consider an MAS of N identical continuous-time agents subject to input saturation 

constraints, moving in an n -dimensional Euclidean space. The dynamic of each agent is modeled by 

( )i i ix Ax B u    

                                  i iy Cx ,  1,2, ,i N 
                               

(2) 

where 
n P,i ix R y R  are the state of agent i  and the measurement output of agent i  respectively, 

m

iu R is the control input, 
m m: R R   is a saturation function defined 

as  ( ) sgn( ) min ,i ij iju u u   with a scalar value 0.  For 

T

1 2( , , , ) ,i mu u u u  T

1 2( ) ( ( ), ( ), , ( )) .i mu u u u         

To address the leaderless consensus, the average state of N agents is defined as follows 

                             1

1 N

i i

i

x x
N 

  , 1,2,...,i N                                   (3) 

http://dict.youdao.com/search?q=continuous&keyfrom=E2Ctranslation
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Definition 1. To address the semi-globalleaderless consensus problem, it means that, for any prior given 

compact set
nR  , we can design a distributed control law uiby only using the partial information of agent i 

from neighbors, such that all the agents can reach the same state asymptotically, i.e., 

lim ( ) ( ) 0i j
t

x t x t


  , 1,2, ,i N   

with any initial condition (0)ix  , 0,1,2, ,i N   

In order to employ the low gain feedback technique, we need to suppose that the pair (A,B)satisfies the 

following Assumption 1. For more details, the reader can refer to the book [27]. 

 

Assumption 1: The pair ( , )A B  is ANCBC and each eigenvalue of the matrix A is on theimaginary axis 

simple. 

 

Lemma 3[29]: Under Assumption 2. A unique solution ( )P   is derived by the following parametric ARE. 

                 
T( ) ( ) ( ) ( ) ( )TA P P A P BB P P                               (4) 

where  0  is a positive scalar. Furthermore, we have  
0

lim 0.P





  

 

Lemma 4[29]: Let Assumption 1 hold, for any 0  and (0,1]  , the unique solution in Lemma 3 is 

1( ) ( )P W   which satisfies a Lyapunov function    

T T( ) ( )
2 2

n nW A I A I W BB
 

                         (5) 

 

Assumption 2:The graph G is connected at all time. 

 

III. MAIN RESULTS 
This section investigates the semi-global leaderless consensus with input saturation under a fixedinteraction 

network topology. The adaptive control algorithm will be employed to address the problem.Now, motivated by 

the distributed consensus protocol with an adaptive control law in [22], we are ready to design a distributed 

consensus algorithm as follows:   

                      

 
1

N

i ij ij i j

j

u K a m x x


     ˆ
T

ij ij ij i j i jm a x x K x x                (6) 

where ij ji   are the plus quantities, 
ijm  is the adaptive coupling weights, the feedbackmatrix K  

and K̂  are designed as ( )TK B P   and ˆ ( ) ( )TK P BB P    respectively, ( )P   is theunique 

solution that can be obtained from the algebra Riccati equation (4). 

By introducing the above contents, now we propose the results as follows. 

 

Theorem1. Suppose that Assumptions 1 and 2 are satisfied. Then the multi-agent system(2) of N agents achieve 

semi-global leaderless consensus under the distributed control law (6). 

Proof:  Let us define 1 2, ,...,
T

T T T

i N        with i i ix x   . Then, we have the following equations 

1

1
( ) ( )

N

i i i i i i

i

x x A B u B u
N

    



        

                            
   ˆ

T

ij ij ij i j i jm a K                                    (7) 

Now, for the multi-agent system (2), let us consider a common Lyapunov function candidate 

                          

 
 

2

1 1 1, 2

N N N
ijT

i i

i i j j i ij

m
V P


  

   


                             (8) 

The matrix  P   is the unique solution from the parametric algebra Riccati equation (6),   is a 

positive parameter to be designed. By way of convenient notation, define c  be a positive number such that 
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2

0,1 , 0 , 1,2,..., 1 1,

sup
2i

N N
ijT

i
x i N i j j i ij

m
c P

 


  

     

  
  

  

 
                                    (9)

 

Such a c  exists since   is bounded and  
0

lim 0P





 . Let 

  : :Nn

c R V c    
                                                              (10)

 

and 
* (0,1]   be such that, for each 

*(0, ]  , 
ce   implies that 

 T

1

( ) ,
N

ij ij i j

j

B P m a x x
 

   1,2,...,i N
                                            (11)

 

Therefore, by Lemma 3, consider any 
*(0, ]  , for any ce  , the derivative of V can be evaluated as 

 
T T

1 1 1 1

( ) ( )
N N N N

ij

i i i i ij

i i i j ij

m
V P P m


     

   


        

                    

T T

1

( ( ) ( ))
N

i i

i

P A A P   


   
1 1

2 ( ) ( )
N N

T T

i ij ij i j

i j

P BB P m a    
 

    

                       

 
      

1 1

N N
Tij T

ij ij i j i j

i j ij

m
a P BB P


      

 


  

          (12)            

 

By Lemma 2, for any 
m , , 1, 2,...,m

i iR R i N    , we have 

T

1 1

1
( )( ) ( ) ( ( ) )

2

N N
T

ij i j i j m

i j

a t L t I  
 

        

where  
T

1 2 N     and  
T

1 2 N     . Therefore, we can continue (12)  as follows: 

T T

1 1

( ) ( )
N N

i i i i

i i

V P P     
 

     
1 1

2 ( ) ( )
N N

T T

ij i i j

i j

a P BB P     
 

   

              

T T( ( ( ) ( ) 2 ( ) ( ))T

NI P A A P L P BB P            

Since the graph is connected, zero is a simple eigenvalue of  L  and all the other eigenvalues are positive. Let 
N NU R   be such a unitary matrix that  2: 0, ,..., .T

NU LU diag     Because the right and left 

eigenvectors of L  corresponding to the zero eigenvalue are 1  and 1T
, respectively, we can choose 

1

1
U Y

N

 
  
 

 and 

2

1T

TU N

Y

 
 
 
  

, with 
 1

1

N N
Y R

 
  and 

 1
2

N N
Y R

 
 . Let 

 1 ,...,
T

T T T

N nU I        . Then we have 

T T( ( ( ) ( ) 2 ( ) ( ))T

NV I P A A P L P BB P            

                      T T

2

( ) ( ) 2 ( ) ( )
N

T

i i i

i

P A A P P BB P      


 
                    (13)                  

 

By Lemma 3 choosing 2 i  , 2,...,i N ,  (13)  can be continued as : 

 T T

2

( ) ( ) 2 ( ) ( )
N

T

i i

i

V P A A P P BB P      


     
1

N
T

i i

i

P   


  
 

0  

Thus, semi-global consensus is achieved, i.e., such that for a set of original condition  0ix   
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0lim ( ) ( ) 0i
t

x t x t


  , 1,2,...,i N  

This completes the proof. 

 

IV. SIMULAION STUDY 
Herein the simulation experiments are supplied to clarify the theoretic results on the leaderlessconsensus 

developed in Section 3. Consider a multi agents system consisting of eight agents.Assume that the dynamic of 

every agent holds the form of (2) with the following parameters: 

1 1 0
,

0 1 1
A B

    
    

   
 

Obviously the pair  ,A B  satisfies Assumption 1. Suppose the topology is considered as in Fig.1. The initial 

states of eight agents are randomly assigned. Thus, We chose ij  = 1 and   = 5, 2  = 0.2907 can be 

obtained by using an exhaustive method. Then 22 2.907   . For the situation of 0.2  , then we 

get a set of solutions as 

 
0.3429 0.3086

0.2
0.3086 0.5556

P
 

  
 

 

Thus, the feedback gain K  and K̂  as 

 
0.0952 0.1715

ˆ0.3086 0.5556 ,
0.1715 0.3087

K K
 

    
   

 

 

 

 

 

 

 
Fig. 1: The interaction communication network. 
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Fig. 2: The states of eight agents.Fig. 3: The adaptive weights ijm . 

 

Under the control law (6), the trajectories of the state difference between agents are shown in Fig. 2. It is 

obvious that the semi-global leaderless consensus can be achieved. 

For the situation of 0.2  , we can get the unique solution 
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Fig. 2: The states of eight agents.Fig. 3: The adaptive weights ijm . 

 

Thus, the feedback gain K  and K̂  as 

 
0.1526 0.2441

ˆ0.3906 0.6250 ,
0.2441 0.3906

K K
 

    
 

 

Under the control law (6),  it is obvious that the semi-global leaderless consensus can be achieved. The 

simulation results are in Fig. 4. The adaptive weights ijm  under 0.2   and 0.4   are shown in Fig. 3 

and Fig. 5 respectively. 

 

V. CONCLUSION 
In this paper, we consider the semi-global leaderless consensus problem of ANCBC multipleagents system 

subject to input saturation restraints both over fixed and switching topology. Theadaptive control law is 

proposed by utilizing a low gain feedback strategy. The connectivity of thegraph in fixed networks and the joint 

connectivity of the graph in switching networks are the keyrequirements to guarantee the semi-global leaderless 

consensus. Finally, the theoretical resultswere verified by simulation study. 
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